Detekcija objekata s pomorskih nadzornih kamera
PDF

Ključne riječi

computer vision
neural networks
small object detection
ship detection računalni vid
neuronske mreže
mali objekti
detekcija brodova

Kako citirati

Pobar, M. (2024). Detekcija objekata s pomorskih nadzornih kamera. Politehnika, 8(1), 42-49. https://doi.org/10.36978/cte.8.1.4

Sažetak

Automatska detekcija objekata u moru na slikama nadzornih ili panoramskih kamera otvara mogućnost automatskog praćenja prometa, detekcije neovlaštenoga kretanja, opasnosti ili onečišćenja. U ovom radu analiziraju se performanse modela temeljenih na arhitekturi YOLOv7 za zadatak detekcije plovila i plutača na takvim slikama. Modeli su naučeni na vlastitom skupu podataka različitih pomorskih scena izrađenom za tu svrhu, korištenjem prijenosa učenja s modela naučenih na općenitim slikama. Također, ispitane su dvije varijante rukovanja ulazom u mrežu, te je korištenje strategije rezanja ulazne slike značajno poboljšalo rezultate detekcije posebno malih objekata u odnosu na osnovni model.  
https://doi.org/10.36978/cte.8.1.4
PDF

Reference

Arnold, E., Al-Jarrah, O. Y., Dianati, M., Fallah, S., Oxtoby, D., Mouzakitis, A. (2019). A Survey on 3D Object Detection Methods for Autonomous Driving Applications. IEEE Transactions on Intelligent Transportation Systems, 20(10), 3782–3795. https://doi.org/10.1109/TITS.2019.2892405

Benjumea, A., Teeti, I., Cuzzolin, F., Bradley, A. (2023). YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles (arXiv:2112.11798). arXiv. http://arxiv.org/abs/2112.11798

Broad, A., Jones, M., Lee, T. Y. (2018, September). Recurrent Multi-frame Single Shot Detector for Video Object Detection. In BMVC (p. 94).

Bochkovskiy, A., Wang, C. Y., Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.

Gasienica-Jozkowy, J., Knapik, M., Cyganek, B. (2021). An ensemble deep learning method with optimized weights for drone-based water rescue and surveillance. Integrated Computer-Aided Engineering, 28(3), 221-235.

Gianinetto, M., Aiello, M., Marchesi, A., Topputo, F., Massari, M., Lombardi, R., Banda, F., Tebaldini, S. (2016). OBIA ship detection with multispectral and SAR images: A simulation for Copernicus security applications. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 1229–1232. https://doi.org/10.1109/IGARSS.2016.7729311

Krišto, M., Ivasic-Kos, M., Pobar, M. (2020). Thermal object detection in difficult weather conditions using YOLO. IEEE access, 8, 125459-125476.

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ..., Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13 (pp. 740-755). Springer International Publishing.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., Berg, A. C. (2016). Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14 (pp. 21-37). Springer International Publishing.

Lyu, H., Shao, Z., Cheng, T., Yin, Y., Gao, X. (2023). Sea-Surface Object Detection Based on Electro-Optical Sensors: A Review. IEEE Intelligent Transportation Systems Magazine, 15(2), 190–216. https://doi.org/10.1109/MITS.2022.3198334

Neskorozhenyi, R. (2023, June). yolo-tiling [GitHub repository]. GitHub. https://github.com/slanj/yolo-tiling

Padilla, R., Netto, S. L., Da Silva, E. A. (2020, July). A survey on performance metrics for object-detection algorithms. In 2020 international conference on systems, signals and image processing (IWSSIP) (pp. 237-242). IEEE.

Petković, M., Kezić, D., Vujović, I., Pavić, I. (2021). Target detection for visual collision avoidance system. Pedagogika, 93, 159-166.

Petković, M., Vujović, I., Lušić, Z., Šoda, J. (2023). Image Dataset for Neural Network Performance Estimation with Application to Maritime Ports. Journal of Marine Science and Engineering, 11(3), 578.

Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788).

Redmon, J., Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.

Sambolek, S., Ivasic-Kos, M. (2021). Automatic person detection in search and rescue operations using deep CNN detectors. Ieee Access, 9, 37905-37922.

Shao, Z., Wang, L., Wang, Z., Du, W., Wu, W. (2020). Saliency-Aware Convolution Neural Network for Ship Detection in Surveillance Video. IEEE Transactions on Circuits and Systems for Video Technology, 30(3), 781–794. https://doi.org/10.1109/TCSVT.2019.2897980

Stojnić, V., Risojević, V., Muštra, M., Jovanović, V., Filipi, J., Kezić, N., Babić, Z. (2021). A Method for Detection of Small Moving Objects in UAV Videos. Remote Sensing, 13(4), 653. https://doi.org/10.3390/rs13040653

Tan, M., Pang, R., Le, Q. V. (2020). Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10781-10790).

Tong, K., Wu, Y. (2022). Deep learning-based detection from the perspective of small or tiny objects: A survey. Image and Vision Computing, 123, 104471.

Unel, F. O., Ozkalayci, B. O., Cigla, C. (2019). The Power of Tiling for Small Object Detection. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 582–591. https://doi.org/10.1109/CVPRW.2019.00084

Varga, L. A., Kiefer, B., Messmer, M., Zell, A. (2022). SeaDronesSee: A Maritime Benchmark for Detecting Humans in Open Water. 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 3686–3696. https://doi.org/10.1109/WACV51458.2022.00374

Wang, C. Y., Bochkovskiy, A., Liao, H. Y. M. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7464-7475).

Wang, C. Y. (2023, June). Yolov7 (Version 0.1) [GitHub repository]. GitHub. https://github.com/WongKinYiu/yolov7/

Yang, J., Li, S., Wang, Z., Dong, H., Wang, J., Tang, S. (2020). Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive Survey and Current Challenges. Materials, 13(24), Article 24. https://doi.org/10.3390/ma13245755

Zhu, Q., Ma, K., Wang, Z., Shi, P. (2023). YOLOv7-CSAW for maritime target detection. Frontiers in neurorobotics, 17, 1210470. https://doi.org/10.3389/fnbot.2023.1210470

Zou, Z., Chen, K., Shi, Z., Guo, Y., Ye, J. (2023). Object Detection in 20 Years: A Survey. Proceedings of the IEEE, 111(3), 257–276. https://doi.org/10.1109/JPROC.2023.3238524

Creative Commons License

Ovaj rad licenciran je pod Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2024 Array