Abstract
Automatic object detection in maritime surveillance or panoramic camera images opens up possibilities for automatic traffic monitoring, unauthorized movement detection, and hazard or pollution identification. This study investigates the performance of models based on the YOLOv7 architecture for the task of detecting vessels and buoys in images captured by panoramic and surveillance cameras. The models are trained on a dedicated dataset comprising diverse maritime scenes created for this purpose, utilizing transfer learning from models trained on generic images. Additionally, two variants of input handling strategies are examined, and the use of the input image cropping strategy significantly improves detection results, especially for small objects, compared to the baseline model.References
Arnold, E., Al-Jarrah, O. Y., Dianati, M., Fallah, S., Oxtoby, D., Mouzakitis, A. (2019). A Survey on 3D Object Detection Methods for Autonomous Driving Applications. IEEE Transactions on Intelligent Transportation Systems, 20(10), 3782–3795. https://doi.org/10.1109/TITS.2019.2892405
Benjumea, A., Teeti, I., Cuzzolin, F., Bradley, A. (2023). YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles (arXiv:2112.11798). arXiv. http://arxiv.org/abs/2112.11798
Broad, A., Jones, M., Lee, T. Y. (2018, September). Recurrent Multi-frame Single Shot Detector for Video Object Detection. In BMVC (p. 94).
Bochkovskiy, A., Wang, C. Y., Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.
Gasienica-Jozkowy, J., Knapik, M., Cyganek, B. (2021). An ensemble deep learning method with optimized weights for drone-based water rescue and surveillance. Integrated Computer-Aided Engineering, 28(3), 221-235.
Gianinetto, M., Aiello, M., Marchesi, A., Topputo, F., Massari, M., Lombardi, R., Banda, F., Tebaldini, S. (2016). OBIA ship detection with multispectral and SAR images: A simulation for Copernicus security applications. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 1229–1232. https://doi.org/10.1109/IGARSS.2016.7729311
Krišto, M., Ivasic-Kos, M., Pobar, M. (2020). Thermal object detection in difficult weather conditions using YOLO. IEEE access, 8, 125459-125476.
Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ..., Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13 (pp. 740-755). Springer International Publishing.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., Berg, A. C. (2016). Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14 (pp. 21-37). Springer International Publishing.
Lyu, H., Shao, Z., Cheng, T., Yin, Y., Gao, X. (2023). Sea-Surface Object Detection Based on Electro-Optical Sensors: A Review. IEEE Intelligent Transportation Systems Magazine, 15(2), 190–216. https://doi.org/10.1109/MITS.2022.3198334
Neskorozhenyi, R. (2023, June). yolo-tiling [GitHub repository]. GitHub. https://github.com/slanj/yolo-tiling
Padilla, R., Netto, S. L., Da Silva, E. A. (2020, July). A survey on performance metrics for object-detection algorithms. In 2020 international conference on systems, signals and image processing (IWSSIP) (pp. 237-242). IEEE.
Petković, M., Kezić, D., Vujović, I., Pavić, I. (2021). Target detection for visual collision avoidance system. Pedagogika, 93, 159-166.
Petković, M., Vujović, I., Lušić, Z., Šoda, J. (2023). Image Dataset for Neural Network Performance Estimation with Application to Maritime Ports. Journal of Marine Science and Engineering, 11(3), 578.
Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788).
Redmon, J., Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.
Sambolek, S., Ivasic-Kos, M. (2021). Automatic person detection in search and rescue operations using deep CNN detectors. Ieee Access, 9, 37905-37922.
Shao, Z., Wang, L., Wang, Z., Du, W., Wu, W. (2020). Saliency-Aware Convolution Neural Network for Ship Detection in Surveillance Video. IEEE Transactions on Circuits and Systems for Video Technology, 30(3), 781–794. https://doi.org/10.1109/TCSVT.2019.2897980
Stojnić, V., Risojević, V., Muštra, M., Jovanović, V., Filipi, J., Kezić, N., Babić, Z. (2021). A Method for Detection of Small Moving Objects in UAV Videos. Remote Sensing, 13(4), 653. https://doi.org/10.3390/rs13040653
Tan, M., Pang, R., Le, Q. V. (2020). Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10781-10790).
Tong, K., Wu, Y. (2022). Deep learning-based detection from the perspective of small or tiny objects: A survey. Image and Vision Computing, 123, 104471.
Unel, F. O., Ozkalayci, B. O., Cigla, C. (2019). The Power of Tiling for Small Object Detection. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 582–591. https://doi.org/10.1109/CVPRW.2019.00084
Varga, L. A., Kiefer, B., Messmer, M., Zell, A. (2022). SeaDronesSee: A Maritime Benchmark for Detecting Humans in Open Water. 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 3686–3696. https://doi.org/10.1109/WACV51458.2022.00374
Wang, C. Y., Bochkovskiy, A., Liao, H. Y. M. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7464-7475).
Wang, C. Y. (2023, June). Yolov7 (Version 0.1) [GitHub repository]. GitHub. https://github.com/WongKinYiu/yolov7/
Yang, J., Li, S., Wang, Z., Dong, H., Wang, J., Tang, S. (2020). Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive Survey and Current Challenges. Materials, 13(24), Article 24. https://doi.org/10.3390/ma13245755
Zhu, Q., Ma, K., Wang, Z., Shi, P. (2023). YOLOv7-CSAW for maritime target detection. Frontiers in neurorobotics, 17, 1210470. https://doi.org/10.3389/fnbot.2023.1210470
Zou, Z., Chen, K., Shi, Z., Guo, Y., Ye, J. (2023). Object Detection in 20 Years: A Survey. Proceedings of the IEEE, 111(3), 257–276. https://doi.org/10.1109/JPROC.2023.3238524
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2024 Array