Abstract
This paper presents the development of an offshore wind turbine model using computational fluid dynamics, (CFD). The offshore wind turbines were modelled in the ANSYS Fluent software package. The aim of the research was to assess the potential of wind turbines as a renewable energy source for the Croatian coastal region and to examine the influence of rectangular and circular stationary domains on the aerodynamic characteristics and power coefficient (Cp) of the turbine. The simulations were carried out on a small horizontal-axis wind turbine equipped with blades of the NACA 6412 airfoil profile, at a maximum wind speed of 10 m/s and a typical tip-speed ratio (TSR, λ) of 3. The dependence of the power coefficient (Cp) on the tip-speed ratio (TSR, λ) was analysed, accompanied by numerical mesh validation and convergence assessment. The obtained results indicate that good agreement between numerical and experimental data is achieved only for λ values up to approximately 3, while significant deviations occur at higher TSR values, regardless of the chosen domain geometry. These deviations arise primarily from insufficient mesh density and limitations in computational resources, highlighting the sensitivity of CFD approaches to numerical settings. Although the current model does not provide a reliable estimation of the power coefficient Cp across the entire operating range, it forms a solid basis for future improvements, including mesh optimisation and time-step refinement.References
Amižić, L. (2024). Usporedba računalne analize proizvodnje električne energije dviju pučinskih vjetroturbina – Završni rad. Split: Sveučilište u Splitu, Prirodoslovno matematički fakultet.
Anderson, C. (2020). Wind Turbines, Theory and Practice. Cambridge University Press.
Arshad, M. & O’Kelly B. C. (2013). Offshore wind-turbine structures: a review. Proceedings of the Institution of Civil Engineers - Energy 166(4), 139-152. DOI: https://doi.org/10.1680/ener.12.00019
OIE (2023). Akcijski plan za obnovljive izvore energije na moru u Hrvatskoj. Preuzeto 05.05.2024 sa https://oie.hr/wp-content/uploads/2023/05/Akcijski-plan-za-obnovljive-izvore-web71.pdf
EU (2023). Directive (EU) 2023/2413 on the promotion of the use of energy from renewable sources (RED III). Preuzeto 05.05.2024. sa https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=CELEX%3A32023L2413
Gavériaux, L., Laverrière, G., Wang, T., Maslov, N., & Claramunt, C. (2019). GIS-based multi-criteria analysis for offshore wind turbine deployment in Hong Kong. Annals of GIS, 25(3), 207–218. DOI: https://doi.org/10.1080/19475683.2019.161839
Gipe, P. (2004). Wind power: renewable energy for home, farm, and business. White River Junction, Vt.: Chelsea Green Pub. Co.
Global Wind Atlas (GWA). Preuzeto 05.05.2024., https://globalwindatlas.info/en
Jabbar Al-Quraishi, B. A., Asmuin, N., Najeh Nemah, M. & Salih, M. (2019). Experimental and simulation investigation for performance of model of bare and shrouded HAWT. International Journal of Mechanical Engineering and Technology (IJMET), 10(1), 434-449.
Johari, M. K., Jalil, M. AA. & Shariff, M. F. M. (2018). Comparison of horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT). International Journal of Engineering & Technology, 7(4.13),74-80.
Liščić, B., Senjanović, I., Čorić, V., Kozmar, H., Tomić, M. & Hadžić, N. (2014). Offshore Wind Power Plant in the Adriatic Sea: An Opportunity for the Croatian Economy. Trans. Marit. Sci. , 3, 103–110.
Lučić, M. (2024). Računalna analiza proizvodnje električne energije pomoću pučinske vjetroturbine na području Jadranskog mora – Završni rad. Split: Sveučilište u Splitu, Fakultet elektrotehnike, strojarstva i brodogradnje.
Martinez Tossas, L. A. & Leonardi, S. (2013). Wind Turbine Modeling for Computational Fluid Dynamic. NREL. Preuzeto 04.03.2024. sa https://docs.nrel.gov/docs/fy13osti/55054.pdf
Matošević, V. (2018). Regulacija vjetrogeneratora u kritičnom području - Diplomski rad. Preuzeto 02.01.2024. sa https://urn.nsk.hr/urn:nbn:hr:200:730457
National Advisory Committee for Aeronautics – NACA (2025). Preuzeto 05.05.2024. sa http://airfoiltools.com/airfoil/details?airfoil=naca6412
Racetin, I., Škomrlj, N. O., Peko, M. & Zrinjski, M. (2023). Fuzzy Multi-Criteria Decision for Geoinformation System-Based Offshore Wind Farm Positioning in Croatia“, Energies, 16(13), 4886. DOI: https://doi.org/10.3390/en16134886
Silva, C. E. A., Oliveira, D. S., Barreto, L. H. S. C. & Bascopé, R. P. T. (2009). A novel three-phase rectifier with high power factor for wind energy conversion systems. 2009 Brazilian Power Electronics Conference, Bonito-Mato Grosso do Sul, Brazil, 2009, pp. 985-992, DOI: https://doi.org/10.1109/COBEP.2009.5347716
Stevanja, F. (2017). Vjetroelektrane. Zadar: Gimnazija Vladimira Nazora.
Uchida, T., Taniyama, Y., Fukatani, Y., Nakano, M., Bai, Z., Yoshida T. & Inui, M. (2020). A New Turbine CFD Modeling Method Based on Porous Disk Approach for Practical Wind Farm Design. Energies, 13(12), 3197. DOI: http://doi.org/10.3390/en13123197
Vagiona, D. G. & Kamilakis, M. (2018) Sustainable Site Selection for Offshore Wind Farms in the South Aegean - Greece. Sustainability , 10(3), 749. DOI: https://doi.org/10.3390/su10030749

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2025 Array
