Teaching robotics in primary school as a means of promoting diversity and maintaining children's mental health
PDF_hr (Hrvatski)
PDF_en

Keywords

integrated teaching
mental health
teaching robotics
robotics
self-realization integrirano poučavanje
mentalno zdravlje
poučavanje robotike
robotika
samoostvarivanje

How to Cite

Suman, D., Pleština, V., & Purković, D. (2024). Teaching robotics in primary school as a means of promoting diversity and maintaining children’s mental health. Polytechnica, 8(2), 8-31. https://doi.org/10.36978/cte.8.2.1

Abstract

The article discusses the importance of learning and teaching robotics for children's development and criticizes the understanding that this field is only relevant in the context of programming, the needs of society or talent selection. The multidisciplinary nature of this field is emphasized as a basis for promoting student diversity. In this sense, students' possibilities, teaching approaches, motivating and demotivating elements are presented. Integrated teaching is emphasized as a solution that offers different "brains" the opportunity to discover their own preferences and self-actualize. Through the "clash of diversity", collaboration is encouraged, communication skills are developed, leading to the acceptance of diversity. The paper concludes that integrative teaching of robotics is more than the acquisition of programming, math or engineering skills, it is an opportunity for more successful development of 21st century skills. It is also an opportunity to learn "unattractive" content in an attractive way, which also contributes to students' mental health by demystifying technology and moving away from the consumer-oriented use of technology. At the same time, such challenging activities develop their mental mechanisms, encourage curiosity and exploration as well as critical thinking, which is a departure from the conformist attitude that is prevalent among the younger generation today.
https://doi.org/10.36978/cte.8.2.1
PDF_hr (Hrvatski)
PDF_en

References

Ackermann, E. (2000). Relating to things that think. Play of Ideas and Ideas of Play, 13, 2-4.

Aldeman, N. L. S., Aita, K., Machado, V. P., da Mata Sousa, L. C. D., Coelho, A. G. B., da Silva, A. S., Mendes, A. P. D., Neres, F. J. D. & do Monte, S. J. H. (2021). Smartpath: A platform for teaching glomerulopathies using machine learning. BMC Medical Education, 21, 248. doi: https://doi.org/10.1186/s12909-021-02680-1

Alimisis, D., Alimisi, R., Loukatos, D. & Zoulias, E. (2019). Introducing Maker Movement in Educational Robotics: Beyond Prefabricated Robots and “Black Boxes”. In: Daniela, L. (eds) Smart Learning with Educational Robotics. Springer, Cham. https://doi.org/10.1007/978-3-030-19913-5_4

Alimisis, D. & Kynigos, C. (2009). Constructionism and robotics in education. In Alimisis, D. (Ed.) Teacher education on robotic-enhanced constructivist pedagogical methods (pp. 11–26). Athens (Greece): Schoolof Pedagogical and Technological Education (ASPETE).

Amo, D., Fox, P., Fonseca, D. & Poyatos, C. (2021). Systematic Review on Which Analytics and Learning Methodologies Are Applied in Primary and Secondary Education in the Learning of Robotics Sensors. Sensors, 21, 153. doi: https://doi.org/10.3390/s21010153

Anderson, V. & Johnson, L. (1997). Systems thinking basics. Waltham, MA: Pegasus.

Anwar, S., Bascou, N. A., Menekse, M. & Kardgar, A. A. (2019). Systematic review of studies on educational robotics. J. Pre-Coll. Eng. Educ. Res., 9, 19–42. doi: https://doi.org/10.7771/2157-9288.1223

Bakala, E., Gerosa, A., Hourcade, J.P. & Tejera, G. (2021). Preschool children robots and computational thinking: A systematic review. Int. J. Child-Comput. Interact., 29, 100337. doi: https://doi.org/10.1016/j.ijcci.2021.100337

Barreto, F. & Benitti, V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers & Education, 58(2), 978-988. doi: https://doi.org/10.1016/j.compedu.2011.10.006

Bascou, N. A. & Menekse, M. (2016). Robotics in K-12 formal and informal learning environments: A review of literature. In Proceedings of the 2016 ASEE Annual Conference and Exposition. doi: https://doi.org/10.18260/p.26119

Black, J. B. & McClintock, R. O. (1995). An Interpretation Construction Approach to Constructivist Design. In B. Wilson (ed.) Constructivist learning environments. Englewood Clifs, NJ: Education Technology Publications.

Camargo, C., Gonçalves, J., Conde, M., Rodríguez-Sedano, F. J., Costa, P. & García-Peñalvo, F. J. (2021). Systematic literature review of realistic simulators applied in educational robotics context. Sensors, 21 (12), 4031. doi: https://doi.org/10.3390/s21124031

Chiu, T. K.F., Xia, Q., Zhou, X., Chai, C. S. & Cheng, M. (2023). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Computers and Education: Artificial Intelligence, 4 (2023), 100118. doi: https://doi.org/10.1016/j.caeai.2022.100118

Dasen, P. (1994). Culture and cognitive development from a Piagetian perspective. In W .J. Lonner, R.S. Malpass (Eds.), Psychology and Culture. Boston: Allyn and Bacon.

Eguchi, A. (2015). Educational Robotics as a Learning Tool for Promoting Rich Environments for Active Learning (REALs). In J. Keengwe (Ed.), Handbook of Research on Educational Technology Integration and Active Learning (pp. 19-47). IGI Global. doi: https://doi.org/10.4018/978-1-4666-8363-1.ch002

Fu, S., Gu, H. & Yang, B. (2020). The affordances of AI-enabled automatic scoring applications on learners’ continuous learning intention: An empirical study in China. British Journal of Educational Technology,0 (0), 1-19. doi: https://doi.org/10.1111/bjet.12995

Gabriele, L., Tavernise, A. & Bertacchini, F. (2012). Active learning in a robotics laboratory with university students. In C. Wankel, P. Blessinger (Eds.), Increasing student engagement and retention using immersive interfaces: Virtual worlds, gaming, and simulation, Cutting-edge technologies in higher education, Vol. 6 Part C (pp. 315–339). Bingley: Emerald Group Publishing Limited. doi: https://doi.org/10.1108/S2044-9968(2012)000006C014

Gardner, H. (1993). Multiple intelligences: The theory in practice. New York: Basic Books/Hachette Book Group.

Gardner, H. & Hutch, T. (1989). Multiple Intelligences Go to School: Educational Implications of the Theory of Multiple Intelligences. Educational Researcher, 18(8), 4-10.

Gunawan, K. D. H., Liliasari, L., Kaniawati, I. & Setiawan, W. (2021). Implementation of competency enhancement program for science teachers assisted by artificial intelligence in designing HOTS-based integrated science learning. Jurnal Penelitian dan Pembelajaran IPA, 7(1), 55–65. doi: https://doi.org/10.30870/jppi.v7i1.8655

Hacker, M., de Vries, M. J. & Rossouw, A. (2009). CCETE Project: Concepts and Contexts in Engineering and Technology Education (DUE 0314910). Deflt (NL): University of Technology; New York: Hofstra University.

Hirankerd, K. & Kittisunthonphisarn, N. (2020). E-learning management system based on reality technology with AI. International Journal of Information and Education Technology, 10(4), 259–264. doi: https://doi.org/10.18178/ijiet.2020.10.4.1373

Jarke, J. & Macgilchrist, F. (2021). Dashboard stories: How narratives told by predictive analytics reconfigure roles, risk and sociality in education. Big Data and Society, 8(1). doi: https://doi.org/10.1177/20539517211025561

Julià, C. & Antolí, J. Ò. (2016). Spatial ability learning through educational robotics. Int. J. Technol. Des. Educ., 26(2), 185-203. doi: https://doi.org/10.1007/s10798-015-9307-2

Kálózi-Szabó, C., Mohai, K. & Cottini, M. (2022). Employing Robotics in Education to Enhance Cognitive Development—A Pilot Study. Sustainability, 14, 15951. doi: https://doi.org/10.3390/su142315951

Keating, D. (1979). Adolescent thinking. In J. Adelson (Ed.), Handbook of adolescent psychology, pp. 211-246. New York: Wiley

Kynigos, C. (2008). Black-and-white-box perspectives to distributed control and constructionism in learning with robotics. Workshop Proceedings of SIMPAR 2008. Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS, Venice (Italy) 2008. 3.-4. November, ISBN 978-88-95872-01-8, pp. 1-9.

Kivunja, C. (2015). Exploring the Pedagogical Meaning and Implications of the 4Cs “Super Skills” for the 21st Century through Bruner’s 5E Lenses of Knowledge Construction to Improve Pedagogies of the New Learning Paradigm. Creative Education, 6, 224-239. doi: http://dx.doi.org/10.4236/ce.2015.62021

Krishnamoorthy, S. P. & Kapila, V. (2016). Using a Visual Programming Environment and Custom Robots to Learn C Programming and K-12 STEM Concepts. In FabLearn ’16: Proceedings of the 6th Annual Conference on Creativity and Fabrication in Education (pp. 41–48). Stanford, CA: ACM. doi: https://doi.org/10.1145/3003397.3003403

Lammer, L., Vincze, M., Kandlhofer, M. & Steinbauer, G. (2017). The Educational Robotics Landscape Exploring Common Ground and Contact Points. In: Merdan, M., Lepuschitz, W., Koppensteiner, G., Balogh, R. (eds) Robotics in Education. Advances in Intelligent Systems and Computing, vol 457. Springer, Cham. https://doi.org/10.1007/978-3-319-42975-5_10

Lapov-Padovan, Z., Kovačević, S., Purković, D. (2018). Razvoj kurikuluma osnovnoškolske nastave robotike. Politehnika, 2 (1), 7-34.

Li, M. & Su, Y. (2020). Evaluation of online teaching quality of basic education based on artificial intelligence. International Journal of Emerging Technologoes in Learning, 15(16), 147–161. doi: https://doi.org/10.3991/ijet.v15i16.15937

Mac Iver, M. A. & Mac Iver, D. J. (2019). “STEMming” the Swell of Absenteeism in the Middle Years: Impacts of an Urban District Summer Robotics Program. Urban Education, 54(1), 65-88. doi: https://doi.org/10.1177/0042085915618712

Mahner, M. & Bunge, M. (2001). Function and functionalism: A synthetic perspective. Philosophy of Science, 68(1), 75-94.

Mangina, E., Psyrra, G., Screpanti, L. & Scaradozzi, D. (2024). Robotics in the Context of Primary and Preschool Education: A Scoping Review, in IEEE Transactions on Learning Technologies, vol. 17 (pp. 342-363), 2024. doi: https://doi.org/10.1109/TLT.2023.3266631

Mason, R., Cooper, G. & Comber, T. (2011). Girlsgetit. ACM Inroads, 2(3), 71–77. doi: https://doi.org/10.1145/2003616.2003638

Master, A., Cheryan, S., Moscatelli, A. & Meltzoff, A. N. (2017). Programming experience promotes higher STEM motivation among first-grade girls. Journal of Experimental Child Psychology, 160, 92–106. doi: https://doi.org/10.1016/j.jecp.2017.03.013

Mayerová, K. & Veselovská, M. (2012). Robotic kits and key competences in primary school. Information and Communication Technology in Education, pp. 175–183, 2012.

McKay, M. M., Lowes, S., Tirthali, D. & Camins, A. H. (2015). Student Learning of STEM Concepts Using a Challenge-based Robotics Curriculum. In 2015 ASEE Annual Conference & Exposition, Seattle, Washington. doi: https://doi.org/10.18260/p.24756

McLeod, S. A. (2009). Jean Piaget. Available at: http://www.simplypsychology.org/piaget.html

Mishra, P. & Koehler, M. J. (2006). Technological Pedagogical Content Knowledge: A Framework for Teacher Knowledge. Teachers College Record. 108(6), 1017–1054.

Mosley, P., Ardito, G. & Scollins, L. (2016). Robotic Cooperative learning promotes student STEM interest. American Journal of Engineering Education, 7(2), 117–128. doi: https://doi.org/10.19030/ajee.v7i2.9895

Mustafaoğlu, R., Zirek, E., Yasacı, Z. & Özdinçler, A. R. (2018). The Negative Effects of Digital Technology Usage on Children’s Development and Health. Addicta, 5(2), 227-247. doi: https://doi.org/10.15805/addicta.2018.5.2.0051

Negrini, L. & Bernaschina, S. (2018). La robotica educativa nella scuola dell’obbligo ticinese. Locarno (SUI): Scuola universitaria professionale della Svizzera italiana, SUPSI Dipartimento formazione e apprendimento (ISBN 978-88-85585-29-4).

Nemiro, J., Larriva, C. & Jawaharlal, M. (2017). Developing creative behavior in elementary school students with robotics. Journal of Creative Behavior, 51(1), 70–90. doi: https://doi.org/10.1002/jocb.87

Okita, S.O. (2014). The relative merits of transparency: Investigating situations that support theuse of robotics in developing student learning adaptability across virtual and physical computingplatforms. British Journal of Educational Technology, 45(5), 844-862. doi: https://doi.org/10.1111/bjet.12101

Papadakis, S., Vaiopoulou, J., Sifaki, E., Stamovlasis, D. & Kalogiannakis, M. (2021). Attitudes towards the use of educational robotics: Exploring pre-service and in-service early childhood teacher profiles. Educ. Sci. 11, 204. doi: https://doi.org/10.3390/educsci11050204

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.

Papert, S. (1993). The children’s machine: Rethinking school in the age of the computer. NewYork: BasicBooks.

Piaget, J. & Duckworth, E. (1970). Genetic Epistemology. American Behavioral Scientist, 13(3), 459-480. doi: https://doi.org/10.1177/000276427001300320

Piaget, J. (1972). The principles of genetic epistemology. New York: Basic Books.

Purković, D. (2013). Konstruktivistički pristup operacionalizaciji kurikuluma tehničke kulture. Pedagogijska istraživanja, 1 (2013), 49-62.

Purković, D. & Salopek, G. (2015). Osnove mehatronike: Za početno učenje i buduće nastavnike. Rijeka: Sveučilište u Rijeci, Filozofski fakultet u Rijeci.

Purković, D. (2016). Elementi kontekstualnog pristupa učenju i poučavanju kao čimbenici uspješnosti nastave tehničke kulture (doktorski rad). Split: Prirodoslovno-matematički fakultet u Splitu.

Purković, D., Suman, D. & Jelaska, I. (2020). Age and gender differences between pupils’ preferences in teaching general and compulsory technology education in Croatia. International journal of technology and design education, 17 (234), 19. doi: https://doi.org/10.1007/s10798-020-09586-x

Purković, D., Delač, D. & Kovačević, S. (2022). Interests of Croatian primary school pupils about elective technology teaching and school activities. Metodički ogledi, 29 (1), 167-189. doi: https://doi.org/10.21464/mo.29.1.6

Purković, D. & Kovačević, S. (2024). The relationship between the teacher’s approach to teaching and the student’s attitude toward technology in Croatian primary schools. International journal of technology and design education, 34 (4), doi: https://doi.org/10.1007/s10798-023-09875-1

Ra, C. K., Cho, J., Stone M. D., De La Cerda, J., Goldenson, N. I., Moroney, E., Tung, I., Lee, S. S. & Leventhal, A. M. (2018). Association of Digital Media Use With Subsequent Symptoms of Attention-Deficit/Hyperactivity Disorder Among Adolescents. JAMA, 320(3), 255–263. doi: https://doi.org/10.1001/jama.2018.8931

Rapti, S. & Sapounidis, T. (2024). Critical thinking, Communication, Collaboration, Creativity in kindergarten with Educational Robotics: A scoping review (2012–2023). Computers & Education, 210, 104968. doi: https://doi.org/10.1016/j.compedu.2023.104968

Resnick, L. B. (1991). Shared cognition: Thinking as social practice. In Resnick, L. B., Levine, J. M., Teasley, S. D. (eds.), Perspectives on Socially Shared Cognition (pp. 1–20), Washington: American Psychological Association.

Reyes Mury, S., Negrini L., Assaf D. & Skweres, M. (2022). How to support teachers to carry out educational robotics activities in school? The case of Roteco, the Swiss robotic teacher community. Frontiers in Education, 7. doi: https://doi.org/10.3389/feduc.2022.968675

Rubenstein, M., Cimino, B., Nagpal, G. & Werfe, J. (2015). AERobot: An Affordable One-Robot-Per-Student System for Early Robotics Education. IEEE International Conference on Robotics and Automation (ICRA), Washington State Convention Center, Seattle, Washington, May 26-30, 2015.

Rusk, N., Resnick, M., Berg, R. & Pezalla-Granlund, M. (2008). New Pathways into Robotics: Strategies for Broadening Participation. Journal of Science Education and Technology, 17, 59–69. doi: https://doi.org/10.1007/s10956-007-9082-2

Sahin, A., Ayar, M. C. & Adiguzel, T. (2014). STEM-related after-school program activities and associated outcomes on student learning. Educational Sciences: Theory and Practice, 14(1), 309–322. doi: https://doi.org/10.12738/estp.2014.1.1876

Sannicandro, K., De Santis, A., Bellini, C. & Minerva, T. (2022). A scoping review on the relationship between robotics in educational contexts and e-health. Front. Educ. 7, 955572. doi: https://doi.org/10.3389/feduc.2022.955572

Scott, H.K. & Cogburn M. (2024). Piaget. Treasure Island (FL): StatPearls Publishing, PMID: 28846231.

Slangen, L. A. M. P., Keulen, J.v. & Gravemeijer, K. (2011). Preparing Teachers to Teach Robotics in Primary Schools. In: Vries, M.J.d., Kuelen, H.v., Peters, S., Molen, J.W.v.d. (eds) Professional Development for Primary Teachers in Science and Technology. International Technology Education Studies, vol 9. Sense Publishers. doi: https://doi.org/10.1007/978-94-6091-713-4_14

Slangen, L. A. M. P. (2016). Teaching robotics in primary school. (Phd Thesis). Eindhoven (NL): Technische Universiteit Eindhoven, Eindhoven School of Education.

Standen, P. J., Brown, D. J., Taheri, M., Trigo, M. J. G., Boulton, H., Burton, A., Hallewell, M. J., Lathe, J. G., Shopland, N., Gonzalez, M. A. B., Kwiatkowska, G. M., Milli, E., Cobello, S., Mazzucato, A., Traversi, M., & Hortal, E. (2020). An evaluation of an adaptive learning system based on multimodal affect recognition for learners with intellectual disabilities. British Journal of Educational Technology, 51(5), 1748–1765. doi: https://doi.org/10.1111/bjet.13010

Tzagkaraki, E., Papadakis, S. & Kalogiannakis, M. (2021). Exploring the Use of Educational Robotics in Primary School and Its Possible Place in the Curricula. In Malvezzi, M., Alimisis, D., Moro, M. (eds) Education in & with Robotics to Foster 21st-Century Skills. EDUROBOTICS 2021. Studies in Computational Intelligence, vol 982. Springer, Cham. doi: https://doi.org/10.1007/978-3-030-77022-8_19

UNESCO (2021). Global Education Monitoring Report (2021). Central and Eastern Europe, Caucasus and Central Asia: Inclusion and education: All means all. Paris: UNESCO. Avalilable at: https://unesdoc.unesco.org/ark:/48223/pf0000375490

Vazquez-Cano, E., Mengual-Andres, S. & Lopez-Meneses, E. (2021). Chatbot to improve learning punctuation in Spanish and to enhance open and flexible learning environments. International Journal of Educational Technology in Higher Education, 18 (1). doi: https://doi.org/10.1186/s41239-021-00269-8

Wang, K., Sang, G.-Y., Huang, L.-Z., Li, S.-H. & Guo, J.-W. (2023). The Effectiveness of Educational Robots in Improving Learning Outcomes: A Meta-Analysis. Sustainability, 15, 4637. doi: https://doi.org/10.3390/su15054637

Westera, W., Prada, R., Mascarenhas, S., Santos, P. A., Dias, J., Guimaraes, M., Georgiadis, K., Nyamsuren, E., Bahreini, K.,

Yumak, Z., Christyowidiasmoro, C., Dascalu, M., Gutu-Robu, G., & Ruseti, S. (2020). Artificial intelligence moving serious gaming: Presenting reusable game AI components. Education and Information Technologies, 25(1), 351–380. doi: https://doi.org/10.1007/s10639-019-09968-2

Williams, K., Igel, I., Poveda, R., Kapila, V. & Iskander, M. (2012). Enriching K–12 science and mathematics education using LEGOs. Advances in Engineering Education, 3(2). Available at: https://eric.ed.gov/?id=EJ1076110

Wisse, M. (2008). Robots, sensoren, algoritmes en motoren (robots, sensors, algorithms and engines). In R. Dijkgraaf, L. Fresco, T. Gualthe´rie van Weezel, & M. van Calmthout (Eds.), De be`tacanon, wat iedereen moet weten van de natuurwetenschappen (the science canon, what everyone should know about science) (pp. 185–187). Amsterdam: De Volkskrant en Meulenhoff b.v

Wu, P.-J., Chiu, F.-Y., Mayerova, K. & Kubincova, Z. (2018). Educational robotics at primary school: Comparison of two research studies. In 2018 17th International Conference on Information Technology Based Higher Education and Training (ITHET), Olhao, Portugal, (pp. 1-5). doi: https://doi.org/10.1109/ITHET.2018.8424621

Yang, Y. Y. & Shulruf, B. (2019). Expert-led and artificial intelligence (AI) systemassisted tutoring course increase confidence of Chinese medical interns on suturing and ligature skills: Prospective pilot study. Journal of Educational Evaluation for Health Professions, 16. doi: https://doi.org/10.3352/jeehp.2019.16.7

Yilmaz, R., Gizem, F. & Yilmaz, K. (2023). The effect of generative artificial intelligence (AI)-based tool use on students’ computational thinking skills, programming self-efficacy and motivation. Computers and Education: Artificial Intelligence, 4, 100147. doi: https://doi.org/10.1016/j.caeai.2023.100147

Zhang, J. J. (2021). Computer assisted instruction system under artificial intelligence technology. International Journal of Emerging Technologoes in Learning, 16(5), 4–16. doi: https://doi.org/10.3991/ijet.v16i05.20307

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2024 Array