

Sveučilište u Rijeci
University of Rijeka
http://www.uniri.hr

Polytechnica: Journal of Technology Education, Volume 5, Number 2 (2021)
Politehnika: Časopis za tehnički odgoj i obrazovanje, Volumen 5, Broj 2 (2021)

Politehnika
Polytechnica

http://www.politehnika.uniri.hr
e-mail: cte@uniri.hr

Izvorni znanstveni rad

Original scientific paper
UDK: 004.423

004.432.2

The visualization of a graph semantics of imperative

languages

Erik Gajdoš, William Steingartner

Faculty of Electrical Engineering and Informatics

Technical University of Košice

Letná 9, 042 00 Košice, Slovakia

erik.gajdos.3@student.tuke.sk, william.steingartner@tuke.sk

Abstract

This work aims to present the software support for teaching in the field of formal semantics of imperative
programming languages. The main part focuses on a software tool that provides a visual representation of the
individual steps of the calculation in categorical semantics, which can also be referred to as graph semantics. The
use of software tools in teaching to visually represent computational steps considerably facilitates understanding
by students and can also serve as a good basis for supporting distance learning. Our program works in the
standard form: after reading the correct user input, a visual representation of the meaning of the program is
generated in the form of a category of states, which is displayed as an oriented graph. For better extensibility,
the program is implemented as a web application.

Keywords: categorical semantics, compiler, semantics of languages, university didactics, visualization, web
application.

1 Introduction

In the process of developing new applications and
systems, it is necessary to know how the program is
performed. To describe this aspect of a code and a
whole formal description of programming languages,
the methods grounded in the semantics of
programming languages are very fruitful. There are
several types of semantic approaches to programs
(Nielson and Nielson, 2007), based on current
requirements. One of the main roles of semantics is to
predict the behavior and output of program
execution.

The education of young IT experts must also follow
current trends in computer science and information
technologies (Herceg et al., 2019). Therefore, in our
opinion, it is essential that the formal foundations,
which make it possible to abstract and formally prove

several procedures, be part of the curriculum for
informatics (Reichl and Schreiner, 2020). Many of
these formal methods are based on the formal
semantics of programming languages. Therefore, we
consider the development and use of visualization
tools that enable static or dynamic visualization of
semantic procedures as a helpful and innovative
element in the modernization of education in the field
of basics of software engineering (Steingartner, 2021).

In this paper, we focus on a software tool that
enables static visualization of categorical denotational
semantics on which we refer also to as graph
semantics. Moreover, this software will be integrated
into planned future software package that will enable
to visualize several semantic methods and to help in
education process. We present our motivation for the
implementation and deployment of the software in
the teaching process as well as the methodological

DOI: https://doi.org/10.36978/cte.5.2.1

E. Gajdoš, W. Steingartner: The visualization of a graph semantics of imperative languages, 7-14

8

design of the application. Furthermore, we focus on
the main role of the application, the description of the
architecture, how the program was developed and the
main user requirements for the target (intended)
functionality of the application. We note that the
purpose of this article is not to present instructions on
how to work with the application and thus replace or
extend the user manual.

The structure of the paper is as follows. In Sect. 2,
the basic concepts for our approach and necessary
preliminaries are introduced. Sect. 3 is focused on the
final architecture. Sect. 4 describes the methods for
processing and compiling the input code and its
transformation to the output representation and Sect.
5 describes the main points about the technical
realization and implementation. In Sect. 6, we briefly
present the functionality and work of the application
on a simple example. Finally, Sect. 7 then concludes
our paper.

2 Preliminaries and basic concepts

In this section, we present the basic concepts and

theoretical foundations necessary to introduce the
content of the researched parts.

2.1 Categories and categorical semantics

Our approach to categorical denotational

semantics was introduced and defined in the paper
(Steingartner et al., 2017). This method is the new
approach for describing the semantics of
programming languages. Its foundations are based on
standard denotational semantics. This type of
semantics uses mainly mathematical elements. For
describing the program, a category of states is
constructed.

Mathematical category theory serves as the basis
for defining semantics. Because the definition of
categories is well known, we provide only the
necessary basics in this text. For further details, we
refer the reader to, for example, Category (Barr, Wells,
1990).

A category is a structure consisting of objects
(𝐴, 𝐵, 𝐶, …) and arrows between them (𝑓: 𝐴 →
𝐵, 𝑔: 𝐵 → 𝐶, etc.). For each object, an identity
morphism exists (e.g. 𝑖𝑑𝐴: 𝐴 → 𝐴); and the
composition of morphisms must hold – for two arrows
𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶, there must be an arrow (their
composition) that goes from 𝐴 to 𝐶:

𝑔 ∘ 𝑓: 𝐴 → 𝐶.

A morphism is visually understood as an oriented

edge in the graph. This is an initial point in this
research when we consider that an edge models the

execution of a statement. Program statements that
can be considered as morphisms are those statements
that cause a change of program state. In contrary to
the denotational semantics of functional languages
which is a well-known method, the research in this
area lacks a categorical definition of imperative and
procedural languages. In such languages, a state is a
foundational notion. For purposes of standard
semantic methods, the state is defined as a function
that assigns to a variable its value (Nielson and
Nielson, 2007). Then the state is an element of a set of
states, a semantic domain for the given semantic
model mostly represented as a function space. An
environment that expresses the context
dependencies known from operational semantics
(Plotkin, 2004) is now a part of category objects and is
given by the level of nesting. Hence each state is
represented as a function, that assigns to a variable on
a given level of nesting its value (Steingartner et al.,
2019). These states are objects in the category of
states. We note that a particular graph that expresses
a path in a program as its meaning represents a single
program execution for specific (specific) input values.

2.2 Categories in the background

Categories have a great power to express

dependencies and properties graphically and in a very
easy and elegant way (Brandenburg, 2016; Perháč et
al., 2017; Walters, 1992). This is the main motivation
for graphical visualizing of the categorical semantics.
During the program execution, each statement has
access to actual values of variables, which are stored
in the current state of the program. The state of a
program is changed in case if an actual statement
modifies the value of some variable. The semantics of
this kind of statement is a function that provides new
state s’ based on actual state s. A variable assignment
statement can be considered as this type of statement
because it changes the value of a variable. The
mathematical definition of this function is

⟦S⟧: s → s',

where S stands for statement and s, s’ for states. The
order of the execution of the statements is as they are
written.

A sequence of the statements which modify the
state of the program can be visualized separately or as
one composite function

⟦S1; S2⟧ = ⟦S2⟧ ⚬ ⟦S1⟧,

where S1 is the first statement and S2 is the second
statement. The execution of commands is sequential
(similar to the composition of the corresponding
functions) and each function continues the calculation

E. Gajdoš, W. Steingartner: The visualization of a graph semantics of imperative languages, 7-14

9

in the state that is the result of the previous function.
In this situation, the statement S1 in state s produces
new state s’ and then the second statement S2 is
executed in the state s’ which produces the final state
s’’ of the sequence. Definition of the sequential
execution in state s is:

⟦S1; S2⟧s = ⟦S2⟧(⟦S1⟧)s.

A graphical representation of the sequential execution
is in depicted Figure 1. Generally, the path in a graph
(a composite morphism in a category, the
compositionality property in category) from the initial
state to the final state represents the semantics of the
program for which the categorical model is
constructed.

Figure 1. Sequential and chain execution of statements
(Steingartner et al., 2017)

The category of states has the property that it also

contains two special objects – initial and final object.
Because each program execution must begin in some
initial state, based on the properties of a category, the
initial state is the initial object of a particular category
of states. Similarly, the object representing the error
and the immediate termination of the program
execution is the final object of the category of states
(there is exactly one unique morphism from each
object to the end object).

2.3 Language Jane for defining the
semantics

As a modeling language, we present a simple

imperative language named Jane. The language Jane
(Steingartner et al., 2019) is an abstract language
embodying a tiny core fragment of conventional
mainstream languages such as C and Java. We note
that this concept of abstract imperative language is
well-known and is also mentioned as language While
or IMP, presented e.g., in (Nielson and Nielson, 2007;
Roșu and Șerbănută, 2010). We adopted the structure
of this language and for pedagogical reasons, we refer
to this language as Jane (it is an acronym for the Slovak
name JAzyk Na Edukáciu – a language for education).
In addition, we note that this abstract language is

widely used in teaching the formal foundations of
languages, syntax, and semantics, as well as in
research in verifying and proving the various
properties of imperative languages with a subsequent
transfer to a particular (real) language.

This language embodies also standard arithmetic
and Boolean expressions. We assume implicit typing
for arithmetic expressions - all arithmetic expressions
are of type integer. The syntax of the language Jane is
given by the following rules in EBNF.

Syntax of arithmetic expressions:

𝑒 ∷= 𝑛 | 𝑥 | 𝑒 + 𝑒 | 𝑒 − 𝑒 | 𝑒 ∗ 𝑒 | (𝑒),

where 𝑛 stands for numeral and 𝑥 for a variable.
Syntax of Boolean expressions:

𝑏 ∷= 𝑡𝑟𝑢𝑒|𝑓𝑎𝑙𝑠𝑒|¬𝑏|𝑏 ∧ 𝑏|𝑒 = 𝑒|𝑒 ≤ 𝑒|(𝑏).

In language Jane, the Boolean expressions are
evaluated in conditional and loop statements.

In the current version of the language, we work
with expressions that are listed in the syntax. For
example, we do not use integer division for arithmetic
expressions, and we do not use some other relational
operators or disjunction for Boolean expressions.
However, if necessary, we can also express some
logical connectors using existing ones.

Generally, the syntax of the expressions is not
closed and can be extended as needed. Associated
with this is the need to extend the language
specification at the software level as well. So if we
change the syntax of expressions, we need to extend
the grammar of the language and add new rules to the
compiler.

Finally, the syntax of the statements is given by
the following rule:

𝑆 ∷= 𝑥 ≔ 𝑒 | 𝐬𝐤𝐢𝐩 | 𝑆; 𝑆 | 𝐢𝐟 𝑏 𝐭𝐡𝐞𝐧 𝑆 𝐞𝐥𝐬𝐞 𝑆|

𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑆

In this work, we present software that can visualize

the mentioned type of semantic with the usage of
mentioned imperative language. This system is
implemented as part of the research under the project
cited in the Acknowledgment section and
documented in (Gajdoš, 2021).

3 Processing and compiling of the
input code

The first point is to figure out how the input code
from the user is processed. For this purpose, we
decided to create a compiler (Appel, 2002) of the
input code. Input code is written in the Jane language
which is translated to the JavaScript language. As an

E. Gajdoš, W. Steingartner: The visualization of a graph semantics of imperative languages, 7-14

10

output language was chosen JavaScript because this
language does not need to be compiled anymore since
it is interpreted language. Another aspect of choosing
this solution is that we needed to simulate the
execution of the input code for its next visualization
and to see how the program works. Another reason
for making the compiler is that Jane language is not a
regular type of language, hence, using context-free
grammar with the appropriate compiler was the best
solution.

In general, the compiler of the programming
languages consists of two parts (Aho, 2006; Dedera,
2014): analysis and synthesis.
(1) Analysis – this part analyzes the input code on the
lexical, syntactic, and semantic sides. The lexical
analysis creates a sequence of the tokens where each
token has its meaning. Based on the output of lexical
analysis syntactic analysis, or in another meaning
parsing of the input code makes tree structure of the
sequence of statements depends on the defined
language grammar. This part also controls if were used
only allowed data types. The last analysis of this part
is the semantic analysis which controls the
consistency of created tree by semantics if were used
only defined variables.
(2) Synthesis – generates the output program.

The next step is to define language grammar for
syntactic analysis. The grammar of the language is
written in the Extended Backus-Naur form (EBNF).
This grammar is presented in Table 1. Each row of this
table describes one rule of the language grammar. All
terminal symbols which represent characters are
written in quotation marks, keywords, an indication of
variables and values are written in italic with the
noncapital first letter. Nonterminal tokens are written
in italic with the capital first letter.

Program → Stat_seq ”EOF”
State_seq → Stat { Stat }
Stat → var ”:=” Expr ”;” | if ”(” Log_Exp

”)” then Body [else Body] |
while ”(” Log_Exp ”)” do Body

Body → ”{” Stat_seq ”}”
Log_Exp → Comparison { ”∧” Comparison }
Comparison → Log_Term (”=” | ”≤”)

Log_Term
Log_term → Expr | [” ⌐”] ”(” Log_Exp ”)”
Expr → Mul { (”+” | ”-”) Mul }
Mul → Term { ”*” Term }
Term → var | val | ”(” Expr ”)”

Table 1. Language grammar for the compiler in EBNF

Our implementation of the compiler is based on
listed rules. As the first step, the lexical analysis which
recognizes used variables and stores them for the next
initialization is performed. The expected input for

lexical analysis is an input code that produces an array
of identified variables. Before performing the next
step, syntax analysis, it is possible to define a default
value for each variable. Syntax analysis works with the
defined grammar and an array of variables with their
default values. A standard error-recovery algorithm
during the compilation is performed: if during this
analysis some error occurs, is this error logged and
compiling process continues with the next symbol.
After this analysis, the output code is generated if the
actual sequence of tokens is syntactically correct.
Before the generating of the output code in the
syntactic analysis is a written statement for
initialization of the identified variables with their
values. Furthermore, the visualization process is
initialized. After these two steps of initialization,
compiler starts to translate the sequence of the input
statements. When the compiler identifies the
assignment statement it writes this statement and
function for updating the output object with
information about the new state and the nesting level
of this statement for better visualization information.
Generating of the output code finishes when the
generator reaches the EOF symbol. After the token
generation process is complete, a semantic analysis is
performed. If some exception occurred during the
compilation, the access code is marked as invalid. This
process of generating output code is presented in
Figure 2.

4 Architecture of the application

We decided to design and develop this system as a
web application. At the first, we needed to identify the
requirements of the system. The first requirement is
that the user should be able to provide an input code.
Another requirement is that the user should be able
to set the default values for used variables in the input
code. It depends on these two requirements we
needed to design and implement the compiler which
will be able to compile input code and simulate the
behavior. The next requirement is that after compiling
and simulating the input code, a graph depicting the
meaning of the input program shall be rendered and
provided as an output. Additional requirements that
we identified is that it user can save written code, list
the existing codes and simulate its behavior. The last
requirement which we identified is that the user
should be able to download the rendered output
graph.

Depending on the listed requirements and the
decision that this system is implemented as a web
application, we split the system into three separate
levels. The design of the application as the conceptual
model is shown in Figure 3. The first level of the
application is the user interface or the visualization

E. Gajdoš, W. Steingartner: The visualization of a graph semantics of imperative languages, 7-14

11

level which is used for reading the input from the user
and for rendering the output graph. The second level
is the server or application level which handles all
requests from the user and reacts to them.

Figure 2. Process of generating output code

Communication between the first and second
levels is implemented by REST API calls. This level also
communicates with the third level on which a
database is implemented. The database level stores all
information about users and their saved codes.

The resulting multi-level architecture meets
modern and current standards for web application
development. It enables a higher level of
modularization and containerization, which also
facilitates the maintenance of the application and the
possibilities for its future software extension.

As was mentioned, each level has its responsibility
by user´s actions. The visualization module reads the
input from the user as input code and sets the default
values of variables. It also provides the forms for

Figure 3. Conceptual model of the system

saving the code, register and login of a user. This level
displays to the user a list of available stored codes,
output graph of the actual visualization process and it
provides the functionality to store this graph also
locally (to download it). Each request received from
the user is sent to the server level by REST API calls. If
the data are to the server during those
communication calls, they are encapsulated into JSON
objects. The server part of the application handles all
requests from the visualization level and sends back
the requested data. At this level, a compiler of the
input code is also implemented, together with the
execution module for the output code which
generates data for rendering the output graph. The
security for managing the access to data and
manipulating them is an integral part of the module.
Security is based on the user´s credentials and the
information about the owner of the stored codes.
User´s verification is implemented by JWT token
authentication. This part of the system communicates
with the last part of the system which is the data layer.
Communication between these two layers is by JPA
interface. For the database layer, we had chosen the
PostgreSQL database system. This more detailed
description of the architecture is depicted in Figure 4.

Figure 4. Component diagram describing system architecture

5 Implementation of the system

The system is implemented in two main modules.

The first module is for the user interface and the
second one serves as the server of the application.

E. Gajdoš, W. Steingartner: The visualization of a graph semantics of imperative languages, 7-14

12

This structure is implemented by the Maven tool
which is independently on the developing platform.
The main file of this structure is a special XML file that
contains all information about the compilation of the
final executable file. Each module contains this kind of
file with information about compiling that module. In
the root level is the parent XML file which has
references to all modules with information about the
order of the compilation and generating the output
file.

The user interface is implemented by Vue.js
framework with additional libraries. This framework is
component-oriented which allows reusability of the
created components. For the graphical aspect, we
used the material library Vuetify which contains a lot
of predefined components with the possibility to
customize them. This material design library helps us
also to achieve responsibility for the application. For
handling and managing data in the front-end part, we
used Vuex and for routing and serving the right
components was used Vue Router. Depending on the
architecture, we needed to figure out how we will
make API calls and for this purpose we used the Axios
library. The whole user interface is multilingual thanks
to the Vue-i18n library. We have implemented three
languages: English, German, and Slovak for now. For
the main part of the application, visualizing the graph
of the semantics we used the GoJS library.

The server part of the application is implemented
in Java with the Spring Boot framework. This
framework is component-oriented as well as a front-
end framework. The reason for choosing this
framework was for its easy implementation of the
REST API interface and easy connection to the
database. The server consists of the entities which
specify database tables, API calls requests and
responses. It also contains controllers which are
handling API calls with associated services that
perform requested actions and communicate with the
database. We have implemented security for some of
the API interfaces because we needed to ensure the
integrity of the data stored in a database. This security
is implemented by JWT token authentication and
based on the user´s login credentials.

6 Example

Now we demonstrate usage of the system and its
implementation on the following example which is
code for finding the maximal value of the three
variables (Figure 5).

Figure 5. Source code of finding the maximum of three values

First, we need to open the application. The initial
screen is shown in Figure 6. The navigation of the
application is situated at the top. At the bottom of the
application, we have a footer that contains contact to
the developer and functionality to change the
language.

Figure 6. Home page of the application

At the start of the visualizing process, we choose

from the navigation menu option Visualize which
shows us the view where we can enter and visualize
the code. This screen is shown in Figure 7. At the first,
we have there only one option for entering the code
for analysis. If we are logged in, we will have there also
option for entering the name of the code and its
description with the possibility to store it for later.
After entering the code, we need to click on the
button Lexical analysis, which sends the code to the
server and then shows us the option for setting the
default values of variables. This setting is not
necessary but can affect the output of the semantic
visualization.

E. Gajdoš, W. Steingartner: The visualization of a graph semantics of imperative languages, 7-14

13

Figure 7. Visualization page

When we are done with the setting, we can

continue with the button Generate graph. After
clicking on this button, an input code and default
values are sent to the server which compiles the code,
generates the executable one and if there are no
errors also executes it. After a successful execution
process, the server sends back data describing the
output graph. Depending on the received data, the
user interface renders the output graph. An example
of this graph is depicted in Figure 8 for input values
𝑥 = 5, 𝑦 = 12, 𝑧 = 7. After rendering the graph, the
option for downloading this graph is also shown.

Figure 8. Example of the output graph

In case of errors during the compilation process,

the code is not executed and a response from the
server is sent with the information about occurred
errors. For example, if we remove the semicolon from
the variable assignment statement and a curly brace
from the else branch, an error depicted in Figure 9
occurs.

Figure 9. Example of the error output

7 Conclusion

We presented in this paper application for visualizing
the semantics of the imperative languages. We
described the theoretical background of this work and
the reasons for its implementation. Our application
allows the entering of custom input code in Jane
language and it provides the syntactic analysis,
identifying incorrectly entered statements and
visualizing the semantics of the given code. Additional
functions are storing (saving) the code for later work,
listing the existing codes and evaluating their behavior
and downloading the rendered graph as a PNG image.
This application can be used for research work and
mainly in the course Semantics of programming
languages as a learning tool for students and teachers
as a tool for better describing the semantics and
behavior of the programs.

Acknowledgment

This work was supported by project KEGA 011TUKE-
4/2020: “A development of the new semantic
technologies in educating of young IT experts”,
granted by the Cultural and Education Grant Agency of
the Slovak Ministry of Education.

References

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. (2006).

Compilers: Principles, Techniques, and Tools (2nd
Edition). Addison Wesley.

Appel, A. W. (2002). Modern Compiler Implementation
in Java. Cambridge: Cambridge University Press.

Barr, M., Wells, C. (1990). Category Theory for
Computing Science. New York: Prentice Hall.

Brandenburg, M. (2016). Einführung in die
Kategorientheorie. Springer Spektrum (in German)

Dedera, L. (2014). Computer languages and their
processing. Armed Forces Academy of General
Milan Rastislav Štefánik (in Slovak).

Gajdoš, E. (2021). The visualization of a graph
semantics of imperative languages. Technical
Report. Technical University of Košice (in Slovak).

E. Gajdoš, W. Steingartner: The visualization of a graph semantics of imperative languages, 7-14

14

Herceg, D. et al. (2019). Possible improvements of
modern dynamic geometry software. Computer
Tools in Education, (2):72–86.

Nielson, H.R., Nielson, F. (2007). Semantics with
Applications: An Appetizer. Undergraduate Topics
in Computer Science. Springer-Verlag London.

Parr, T. (2013). The Definitive ANTLR 4 Reference.
Pragmatic Bookshelf, Raleigh, NC, 2nd edition.

Perháč, J., Mihályi, D., Novitzká, V. (2017). Modeling
Synchronization Problems: From Composed Petri
Nets to Provable Linear Sequents. Acta
Polytechnica Hungarica, 14(8), 165-182.

Plotkin, G. (2004). A structural approach to
operational semantics. Journal of Logic and
Algebraic Programming, 60—61:17-139.

Roșu, G., Șerbănută, T. F. (2010), An overview of the K
semantic framework, The Journal of Logic and
Algebraic Programming, 79(6), 397-434.

Reichl, F.X., Schreiner, W. (2020). Mathematical
Model Checking Based on Semantics and SMT. IPSI
Transactions on Internet Research, 16(2):4-13.

Steingartner, W. et al. (2017). New approach to
categorical semantics for procedural languages.
Computing and Informatics, 36(6), pp. 1385–1414,
Slovakia. doi:10.4149/cai_2017_6_1385

Steingartner, W., Novitzká, V., Schreiner, W. (2019).
Coalgebraic Operational Semantics for an
Imperative Language. Computing and Informatics,
38(5), pp. 1181–1209, Bratislava, Slovakia.
doi:10.31577/cai_2019_5_1181

Steingartner, W. (2021). On some innovations in
teaching the formal semantics using software
tools. Open Computer Science, 11(1):2-11.

Walters, R.F.C. (1992). Categories and Computer
Science. Cambridge University Press

